Some Results of Differential Subordination and Superordination for Univalent Functions

Ihsan Ali Abbas

Ministry of Education, Education of Al-Qadisiyah, Diwaniyah, Iraq.

E-mail: ihasnabbas89@gmial.com.

Received 02-01-2021, Accepted 16-03-2021, published 14-04-2021.

DOI: 10.52113/2/08.01.2021/91-97

Abstract: Let q_1 and q_2 belong to a certain class of normalized analytic univalent functions in the open unit disk of the complex plane. Sufficient conditions are obtained for normalized analytic functions p to satisfy the double subordination chain $q_1(z) \prec p(z) \prec q_2(z)$, then we obtain $q_1(z)$ is the best subordinant, $q_2(z)$ is the best dominant. Also we derive some sandwich –type result.

Key words: Univalent function, Differential subordination, Differential superordination, Sandwich theorem

2021 Mathematics Subject Classification : 30 C 45.

1. Introduction

Let \mathcal{H} be the class consisting of analytic function in the open unit disk $U = \{z \in \mathbb{C} : |z| < 1\}$. For $a \in \mathbb{C}$ and $n \in \mathbb{N} = \{1,2,3,...\}$, $\mathcal{H}[a,n] = \{f \in \mathcal{H} : f(z) = a + a_n z^n + a_{n+1} z^{n+1} + \cdots \}$ with $\mathcal{H}_1 = [1,1]$. Le \mathcal{X} t be the subclass of \mathcal{H} consisting of functions the form:

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n , \qquad z$$

$$\in U. \tag{1.1}$$

Which are analytic and univalent in U and satisfying the normalized conditions f(0) = f'(z) - 1 = 0. A function $f \in \mathcal{X}$ is said to be starlike function of order α , if $\mathcal{R}\{zf'(z)/f(z)\} > \alpha$, $0 \le \alpha < 1$, $z \in U$. Denote

the class of starlike functions by $S^*(\alpha)$. In particularly the class $S^*(0) = S^*$, see [Duren]. A function $f \in \mathcal{X}$ is said to be convex function of order α , if $\mathcal{R}\{1+zf''(z)/f'(z)\}>\alpha$, $0 \le \alpha < 1$, $z \in U$. Denote the class of convex functions by $C(\alpha)$. In particularly the class C(0) = C. see [Duren].

A function $f \in \mathcal{H}$ is said to be subordinate to an analytic function $g \in \mathcal{H}$ or g superordinates f, written as f(z) < g(z), $z \in U$, if there exists a schwars function w(z) analytic in U with w(0) = 0 and |w(z)| < 1, satisfying f(z) = g(w(z)), $z \in U$. If the function g is univalent in U, then f(z) < g(z) is equivalent to f(0) = g(0) and $f(U) \subset g(U)$, see [Miller].

An exposition on the widely used theory of differential subordination, developed in the main by Miller and Mocanu, with numerous applications to univalent functions can be found in their monograph [8].

Let $p, h \in \mathcal{H}$ and $\phi(r, s, t; z) : \mathbb{C}^3 \times U \to \mathbb{C}$. If h(z) be univalent in U and p(z) satisfies the second-order subordination

$$\phi(p(z), zp'(z), z^2p''(z); z) < h(z)$$
 (1.2)

then p(z) is called a solution of the differential subordination (1.2). A univalent function q(z) is called a dominant of the solutions of the differential subordination or more simply a dominant if p(z) < q(z) for all p(z) satisfying (1.2). A univalent dominant $\tilde{q}(z)$ that satisfies $\tilde{q}(z) < q(z)$ for all dominants q(z) of (1.2) is said to be the best dominant of (1.2).

Miller and Mocanu [9] also introduced the dual concept of differential superordination .

Let $p, h \in \mathcal{H}$ and $\phi(r, s, t; z) : \mathbb{C}^3 \times U \to \mathbb{C}$. If p and $\phi(p(z), zp'(z), z^2p''(z); z)$ are univalent in U and p satisfies the second-order superordination

$$h(z) < \phi(p(z), zp'(z), z^2p''(z); z)$$

then p(z) is called a solution of the differential superordination (1.3). An analytic function q(z) is a subordinant if q(z) < p(z) for all p(z) satisfyin (1.3). A univalent subordinant $\tilde{q}(z)$ satisfying $q(z) < \tilde{q}(z)$ for all subordinants q(z) of (1.3) is said to be the best subordinant.

Miller and Mocanu [9] obtained sufficient conditions on h, q and ϕ for which the following differential implication holds:

$$h(z) < \phi(p(z), zp'(z), z^2p''(z); z) \implies q(z)$$

 $< p(z).$

Ali et al. [2] and [4] gave several applications of first – order differential subordination and superordination to obtain sufficient conditions for normalized analytic functions f to satisfy

$$q_1(z) < \frac{zf'(z)}{f(z)} < q_2(z)$$

where q_1 and q_2 are given univalent functions in U. In [3], they obtained applied differential superordination to functions defined by means of linear operators. Recently, Shanmugam et al [10,11] obtained it called sandwich results for certain classes of analytic functions.

Hints to the work done by the authors [5] and [7] with formula special only on differential subordination. In [1] discusses around generalize this idea with formula special to (n) deriving only on differential subordination.

The following definition and results will be required in this search.

Definition 1.1.[9]: Let Q denote the set of all functions f that are analytic and univalent on $\overline{\mathbb{U}} \setminus E(f)$, where $E(f) = \{ \zeta \in \partial U : \lim_{z \to \zeta} f(z) = \infty \}$, and are such that $f'(z) \neq 0$ for $\zeta \in \partial U \setminus E(f)$.

Lemma 1.2.[8]: Let q(z) be univalent in U and θ be analytic function in domain D containing q(U). If $z q'(z) \theta(q(z))$ is starlike and

$$zp'(z) \theta(p(z))$$

 $< zq'(z) \theta(q(z)),$ (1.4)
then

p(z) < q(z), and q(z) is the best dominant of (1.4).

Lemma 1.3.[8]: Let q(z) be univalent in U, and let θ and ϕ be analytic in a domain D containing q(U), with $\phi(w) \neq 0$, $w \in q(U)$. Set $Q(z) = zq'(z)\phi(q(z))$, let $h(z) = \theta(q(z)) + Q(z)$. Suppose that (i) Q(z) is a starlike function in U,

$$(ii) \Re\left\{\frac{z\,h'(z)}{Q(z)}\right\} > 0,$$

for all $z \in U$. If p(z) is analytic in U, with p(0) = q(0), $p(U) \subseteq D$ and

$$\theta(p(z)) + zp'(z)\phi(p(z)) < \theta(q(z)) + zq'(z)\phi(q(z)),$$
 (1.5)

then p(z) < q(z), and q(z) is the best dominant of (1.5).

Lemma 1.4.[2]: Let q(z) be univalent in U , and let θ and ϕ be analytic in a domain D containing q(U). Suppose that

(i) $Q(z) = zq'(z) \phi(q(z))$ is a starlike univalent in U,

$$(ii)\,\Re\left\{\frac{\theta'(q(z))}{\phi(q(z))}\right\}>0$$

, for all $z \in U$. If $p(z) \in \mathcal{H}[q(0),1]] \cap Q$, with $p(U) \subseteq D$, such that

 $\theta(q(z)) + zq'(z)\phi(q(z))$ is univalent in U, and

$$\theta(q(z)) + zq'(z)\phi(q(z)) < \theta(p(z)) + zp'(z)\phi(p(z)), \qquad (1.6)$$

then q(z) < p(z), and q(z) is the best subordinant of (1.6).

Lemma 1.5.[6]: Let f be analytic in D, with f(0) = f'(0) - 1 = 0. Then $f \in S^*$ if and only if $zf'(z)/f(z) \in \mathbb{P}$ (where \mathbb{P} is the class of all function φ analytic and having positive real part in D, with $\varphi(0) = 1$).

2. Main Results

Theorem 2.1. Let the function q(z) be univalent in U, $q(z) \neq 0$ and $zq'(z)\theta(q(z)) \neq 0$ is starlike function in U. If $f \in \mathcal{X}$ satisfies the subordination

$$1 + \frac{z f''(z)}{f'(z)} - \frac{z f'(z)}{f(z)}$$

$$< \frac{z q'(z)}{\delta q(z)}, \tag{2.1}$$
then

$$\left[\frac{zf'(z)}{f(z)}\right]^{\delta} \prec q(z), \quad z \in U, \delta \in \mathbb{C}^*,$$

and q(z) is the best dominant.

Proof. Define the function

$$=\left[\frac{zf'(z)}{f(z)}\right]^{\delta}, z \in U, \delta \in \mathbb{C}^*,$$

then

$$zp'(z) = \delta \left[\frac{zf'(z)}{f(z)} \right]^{\delta} \left[1 + \frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)} \right]. \tag{2.3}$$

Setting $\theta(w) = \frac{1}{w\delta}$ it can easily observed that $\theta(w)$ is analytic function in \mathbb{C}^* , then, we

have,
$$\theta(p(z)) = \frac{1}{\delta p(z)}$$
 and $\theta(q(z)) = \frac{1}{\delta q(z)}$

•

From (2.3) and simple a computation shows that

$$zp'(z)\theta(p(z))$$

$$= 1 + \frac{zf''(z)}{f'(z)}$$
$$-\frac{zf'(z)}{f(z)}, \qquad (2.4)$$

together (2.1) and (2.4), we get

$$zp'(z)\theta(p(z)) \prec \frac{zq'(z)}{\delta q(z)} = z q'(z)\theta(q(z)).$$

Thus by applying Lemma (1.2), we obtain p(z) < q(z), by using (2.2), we have the required result, and q(z) is the best dominant of.

Taking $q(z) = \sin Az$, $-1 \le A \le 1$, since the function $\sin z$ is entire function and injective, in theorem (2.1), we obtain the following Corollary.

Corollary 2.2. If $f \in \mathcal{X}$ satisfies the subordination

$$1 + \frac{z f''(z)}{f'(z)} - \frac{z f'(z)}{f(z)}$$

$$< \frac{Az}{\delta} \cot Az, \tag{2.5}$$

then

$$\left[\frac{zf'(z)}{f(z)}\right]^{\delta} \prec \sin Az$$
, $z \in U$, $\delta \in \mathbb{C}^*$,

and $q(z) = \sin Az$ is the best dominant.

Theorem 2.3. Let $0 < \delta < 1$, and $\lambda, \beta \in \mathbb{C}^*$, let q(z) be univalent in U and q satisfy the following condition :

$$\Re\left\{1 + \frac{zq''(z)}{q'(z)} - \frac{\beta}{\lambda}\right\}$$
> 0. (2.6)

If $f \in \mathcal{X}$ satisfies the subordination

$$\left[\frac{zf'(z)}{f(z)}\right]^{\delta} \left\{ \delta \lambda \left[1 + \frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)} \right] + \beta \right\}
< \beta q(z)
- \lambda z q'(z),$$
(2.7)

then

$$\left[\frac{zf'(z)}{f(z)}\right]^{\delta} \prec q(z), \qquad z \in U \ , \delta \in \mathbb{C}^*,$$

and q(z) is the best dominant.

Proof. we begin by setting

$$p(z)$$

$$= \left[\frac{zf'(z)}{f(z)}\right]^{\delta} , z \in U , \delta \in \mathbb{C}^* ,$$

then by a computation shows that

$$zp'(z) = \delta \left[\frac{zf'(z)}{f(z)} \right]^{\delta} \left[1 + \frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)} \right]. \tag{2.9}$$

Let us consider the function

$$\theta(w) = \beta w \,, \ \phi(w) = -\lambda \,, \quad w \in \mathbb{C} \ ,$$

then $\theta(w)$ and $\phi(w)$ is analytic in \mathbb{C} . Also if, we suppose

$$Q(z) = zq'(z)\phi(q(z)) = -\lambda zq'(z) \text{ and },$$

$$h(z) = \theta(q(z)) + Q(z) = \beta q(z) - \lambda zq'(z).$$

From assumption (2.6), we yield that Q(z) is starlike function in U, since

$$\frac{zQ'(z)}{Q(z)} = 1 + \frac{zq''(z)}{q'(z)},$$
and
$$\Re\left\{\frac{zQ'(z)}{Q(z)}\right\}$$

$$= \Re\left\{1 + \frac{zq''(z)}{q'(z)}\right\} > \Re\left\{\frac{\beta}{\lambda}\right\}$$

and by Lemma (1.5), with

$$\varphi(z) = \frac{z \mathcal{Q}'(z)}{\mathcal{Q}(z)} = 1 + \frac{z q''(z)}{q'(z)} \ , \quad \varphi(0) = 1. \label{eq:phi}$$

and we get

$$\Re\left\{\frac{z\,h'(z)}{Q(z)}\right\} = \Re\left\{1 + \frac{zq''(z)}{q'(z)} - \frac{\beta}{\lambda}\right\} > 0 , \quad z$$

$$\in U.$$

A simple computation together with (2.9) and (2.10), we have,

$$\begin{split} zp'(z)\phi\big(p(z)\big) + \theta\big(p(z)\big) \\ &= \left[\frac{zf'(z)}{f(z)}\right]^{\delta} \bigg\{ \delta\lambda \, \left[1 + \frac{z\,f''(z)}{f'(z)} \right. \\ &\left. - \frac{zf'(z)}{f(z)} \right] + \beta \bigg\}, \end{split}$$

therefore the subordination (2.7) becomes

$$zp'(z)\phi(p(z)) + \theta(p(z)) < zq'(z)\phi(q(z)) + \theta(q(z)).$$

By applying Lemma (1.3) and using (2.8), we obtain our result.

Let us assume $q(z) = e^{\lambda Az} - 1 \le A \le 1$ in the Theorem (2.3), we have the following result.

Corollary 2.4. Let $f \in \mathcal{X}$ and suppose that $\Re\left\{1 + \lambda Az + \frac{\beta}{\lambda}\right\} > 0$ If f satisfies the subordination

$$\left[\frac{zf'(z)}{f(z)}\right]^{\delta} \left\{ \delta \lambda \left[1 + \frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)} \right] + \beta \right\} < (\beta + \lambda^2 z A) e^{\lambda A z},$$
(2.11)

then

$$\left[\frac{zf'(z)}{f(z)}\right]^{\delta} \prec e^{\lambda Az}, \qquad z \in U \ , \delta \in \mathbb{C}^*,$$

and $q(z) = e^{\lambda Az}$ is the best dominant.

Theorem 2.5. Let q(z) be univalent in U with q(0) = 1, let $0 < \delta < 1$, and $\lambda, \beta \in \mathbb{C}^*$ and $\Re\{\theta'(q(z))/\phi(q(z))\} > 0$. Let $f \in \mathcal{X}$

and
$$\left[\frac{zf'(z)}{f(z)}\right]^{\delta} \in \mathcal{H}[q(0),1] \cap \mathbb{Q}$$
.

If the function

$$Y(z) = \left[\frac{zf'(z)}{f(z)}\right]^{\delta} \left\{ \delta\lambda \left[1 + \frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)} \right] + \beta \right\},$$
and
$$(2.12)$$

$$\beta q(z) - \lambda z q'(z) < \Upsilon(z)$$
 (2.13)
then

$$q(z) \prec \left[\frac{zf'(z)}{f(z)}\right]^{\delta}, \qquad z \in U, \delta \in \mathbb{C}^*,$$

and q(z) is the best subordinant.

Proof. Consider the analytic function

$$p(z)$$

$$= \left[\frac{zf'(z)}{f(z)}\right]^{\delta} , z \in U , \delta \in \mathbb{C}^* ,$$

By differentiating (2.14), with respect to z, vields

$$zp'(z) = \delta \left[\frac{zf'(z)}{f(z)} \right]^{\delta} \left[1 + \frac{zf''(z)}{f'(z)} - \frac{zf'(z)}{f(z)} \right]. \tag{2.15}$$

Setting the function.

$$\theta(w) = \beta w$$
, $\phi(w) = -\lambda$, $w \in \mathbb{C}$,

then $\theta(w)$ and $\phi(w)$ is analytic in \mathbb{C} , with $\phi(w) \neq 0$ for all $w \in \mathbb{C}$. Also, we have

 $Q(z) = zq'(z)\phi(q(z)) = -\lambda zq'(z)$, it is starlike univalent function in U, according to Lemma (1.5). And

$$\Re\left\{\frac{\theta'(q(z))}{\phi\big(q(z)\big)}\right\} = \Re\left\{\frac{\beta q'\left(z\right)}{\lambda}\right\} > 0 , z \in U,$$

by simple computation, shows that

$$Y(z) = \beta p(z) - \lambda z p'(z). \tag{2.16}$$

From (2.13) and (2.16), with applying of Lemma (1.4), we obtain q(z) < p(z), and using (2.14), we have required result. Combining results of differential subordination Theorem 2.3 and superordination Theorem 2.5, to get at the following sandwich result.

Theorem 2.6. Let $q_1(z)$ and $q_2(z)$ be univalent functions in U, with $q_1(0) = q_2(0) = 1$, $\delta, \lambda \in \mathbb{C}^*$, $\beta \in \mathbb{C}$. Suppose q_1 satisfies $\Re\left\{\frac{\beta q'(z)}{\lambda}\right\} > 0$ and q_2 satisfies (2.6). Let $f \in \mathcal{X}$ and

$$\left[\frac{zf'(z)}{f(z)}\right]^{\delta} \in \mathcal{H}[q(0),1] \cap \mathbb{Q}.$$

If the function Y(z) given by equation (2.12) is univalent in U, and

$$\beta q_1(z) - \lambda z q_1{'}(z) < \Upsilon(z) < \beta q_2(z) - \lambda z q_2{'}(z),$$
 then

$$q_1(z) < \left[\frac{zf'(z)}{f(z)}\right]^{\delta}$$

$$< q_2(z) \tag{2.17}$$

and q_1 , q_2 are respectively, the best subordinant and the best dominant of (2.17).

References:

[1] W. G. Atshan and I. A. Abbas, **Differential Subordination for Univalent Functions**,

European Journal of Scientific Research (EJSR) (UK), 145 (4) (2017), 427-434.

[2] R. M. Ali, V. Ravichandran, M. H. Khan and K. G. Subramanian, **Differential** sandwich

theorems for certain analytic functions, Far East Journal of Mathematical Sciences,

15(1)(2004),87-94.

[3] R. M. Ali, V. Ravichandran, M. H. Khan and K.G. Subramanian, **Applications of first order**

differential superordinations to certain linear operators, Southeast Asian
Bulletin of

Mathematics, 30(5)(2006), 799-810.

[4] M. K. Aouf and T. Bulboacâ, Subordination and superordination properties of

multivalent function defined by certain integral operator, J. Franklin Inst. 347(2010),

641-653.

[5] W.G. Atshan and F.J. Abdulkhadim, On subordination properties of univalent

functions, International Journal of Science and Research (IJSR), 3(9)(2014), 3 pages.

[6] P. L. Duren, **Univalent Functions**, in: Grundlehren der Mathematischen Wissenschaften ,

Band 259, Springer-Verlag, New York, Berlin, Heidelberg and Tokyo, (1983).

[7] M. H. Lafta, On Some Classes of Topics in Univalent and Multivalent Function **Theory**, M. Sc. Thesis, University of Al-Qadisiyah, College of Computer Science &

Mathematics, Iraq, (2015).

[8] S. S. Miller and P. T. Mocanu, **Differential subordinations: Theory and Applications**,

in : Series on Monographs and Textbooks in Pure and Applied Mathematics, Vol.225, Marcel

Dekker, Incorporated, New York and Basel, (2000).

[9] S. S. Miller and P. T. Mocanu, Subordinations of differential superordinations,

Complex Variables, 48(10)(2003),815-826.

[10] T.N. Shanmugam, S. Sivasubbramanian and H. M. Srivastava, **On sandwich** theorems for

some classes of analytic functions, Int. J. Math. Math. Sci. Vol. (2006), Article ID 29684,

1-13.

[11] T. N. Shanmugam, V. Ravichandran and S. Sivasubramanian, **Differential** sandwich

theorems for some subclasses of analytic functions, the Australian Journal of

Mathematical Analysis and Applications , 3(1)(2006) , 1-11.